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Overview:

> Selection effects are the bane of blazar studies

> Goals of this study (Lister et al. 2011 ApJ 742, 27) :

» Assemble complete y-ray & radio flux-limited AGN samples for
study with the VLBA

» Compare pc-scale radio jet and y-ray emission properties

» What can we learn about beaming in different regimes and in
different blazar classes?



MOJAVE Bright AGN Sample

Complete for:
= dec.>-30° |b|>10°

= 1LAC >100 MeV energy flux
above 3x10-'1 erg s*' cm-2

OR

= 15 GHz VLBA flux density
has exceeded 1.5 Jy at any
time during 11month Fermi
1LAC period

> Only one missing (unassociated)
source: in top left corner region

» 173 AGNs in total, 48 are both
radio- and y-ray selected (top right
corner)

Lister et al. 2011, ApJ 742, 27



Redshift distributions
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> Y-ray selected blazars have an additional sub-population of
low-redshift HSP BL Lacs that are intrinsically very bright in y-
rays

> the brightest y-ray and radio-selected quasars have similar
redshift distributions.



y-ray Loudness

> Define loudness as ratio
of y-ray to 15 GHZ VLBA
radio luminosity

> Lowest luminosity BL
Lacs (HSPs) all have high
y-ray loudness (due to
SED peak location)

> LAT-non-detected AGNs
all have low y-ray
loudness due to sample
selection bias (omits
radio-weak--y-ray weak
sources)
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Synchrotron peak: a key blazar parameter
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_ Slide from Gino Tosti; FMJ 2010
No HSP FSRQs discovered yet



y-ray loudness and the Sync. peak

> 05628+134: Low-spectral peaked FSRQ at z=2
> Moderate apparent y-ray to radio luminosity ratio

Radio y-ray

ratio

Abdo et al. 2010, ApJ 716, 30



y-ray loudness and the Sync. peak

> Mk 421: High-spectral peaked BL at z=0.033
> Larger apparent y-ray to radio luminosity ratio

Radio y-ray

larger
ratio

Abdo et al. 2010, ApJ 716, 30



Pc-scale radio flux drops with increasing v,_., for BL Lacs

peak



y-ray loudness increases with v, for BL Lacs

Mrk 501



Synchrotron peak: a key blazar parameter
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Slide from Gino Tosti; FMJ 2010



y-ray loudness versus y-ray hardness



y-ray loudness versus y-ray hardness (BLL only)

» Photon index is well
correlated with

Compton peak scatter is only
location (LAT team, 0.3 dex
ApJ 716,30)

> Should this trend
exist if the y-ray and
pc-scale radio jet
emission are fully
independent ?

» BLL have lower avg.
Compton
Dominance values

than FSRQ (Giommi
et al. arXiv:1108.1114)

> Trend is continuous from HSP to LSP



Parsec-scale radio core compactness vs. v ..,

> Radio core compactness
(brightness temperature)
is strongly affected by
beaming and jet activity
level

> FSRQ show no trend at
all between y-ray
loudness and core
compactness, reflecting
wide intrinsic range of
these two properties

> Low compactness level
of HSP radio cores is
suggestive of lower
Doppler beaming factors



Variability Doppler factors: Tornikoski et al. 2011

Doppler factor

log synchrotron peak frequency [Hz]



Summary

> Bright BL Lacs (but not FSRQ) display several trends:

» y-ray loudness positively correlated with synchrotron SED peak freq.
» pc-scale radio emission correlated with high energy SED peak

> in the radio, HSP BL Lacs do not show high compactness, high
variability, high core linear polarization, or high superluminal speeds

> Radioly-ray correlations are suppressed in FSRQs
because of wide range of Compton Dominance values

> Simplest current explanation for brightest BL Lacs:
> lower Doppler factors for the HSPs
» SSC origin of y-rays favored over ECS

> tightness of trends suggest a limited range of SED shape & Compton
Dominance within the bright BL Lac population (needs further
verification with high quality simultaneous SED data)

Lister et al. 2011, ApJ 742, 27






High-spectral-peaked blazar‘(unbeamed SED)‘
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SSC model predicts similar change in both SED peaks
when jet emission is beamed



High-spectral-peaked blazar (beamed SED)

log v F,

Radio |og v  GeVy-ray

For the SSC model, y—ray loudness is more affected
by SED peak location than beaming (BL Lacs)



Low-spectral-peaked blazar|(unbeamed SED) ‘
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Low-spectral-peaked blazar (heamed SED)
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In the ECS model, y-ray loudness is more strongly
affected by beaming than SED peak location (FSRQ)



What’s next:

> Do these trends hold for weaker blazars?

» Parsec-jet properties of all 1TFGL AGN associations
» 8 GHz VLBI survey underway by Kovalev, Petrov, et al.

> Pc-scale jet speeds of HSP and low-luminosity AGN
» MOJAVE-2 program underway

> Full SED information on brightest AGNs
» Planck AGN survey
» E. Meyer Ph.D. thesis



VLBA core polarization vs. v,



Jet speed vs. pc-scale radio luminosity

Lister et al., in prep.



OVRO radio variability level versus v .,



Five factors determine y-ray jet brightness:

—

.|Intrinsic jet speed

> Doppler
factor

3. Location of synchrotron SED peak

2.|Viewing angle

4. Activity state of jet

- Relative Importance 2>

9. Proximity to Earth



Predictions of the beaming model

A. External-photon Compton scattering models predict

more beaming in gamma-rays than in radio regime

-> extra Lorentz transformation between jet frame and external
seed photon frame (e.g., Dermer 1995)

- may apply to flat spectrum radio quasars (FSRQ)

B. High-spectral peaked jets in gamma-ray samples:
- intrinsically much brighter in gamma-rays
- don’t need to be as highly beamed as the low-peaked quasars
—> all HSPs are BL Lacs, where synchrotron self-Compton applies



Doppler beaming

Unbeamed ®
Y-ray lum.

Unbeamed radio luminosity



Doppler beaming

(Synchrotron self-Compton)

Beamed

Y-ray lum.
Equal beaming in

both regimes
preserves the
intrinsic

correlation

Beamed radio luminosity



Doppler beaming

(External self-Compton)

Beamed g/o Unequal beaming
destroys linear
Y-ray lum. correlation:
Produces an
upper envelope

Highest beamed
sources lie on
edge

Beamed radio luminosity



Poster: Lister 2007, 15t Fermi Symposium



Dashed line:
upper limits

> Gamma-ray loudness spans at least 4 orders of
magnitude in the brightest blazars

> higher mean for BL Lacs vs. quasars






